
Visualizing Execution Models and Testing Results

Bernard Stepien, Liam Peyton

School of Engineering and Computer Science

University of Ottawa

Ottawa, Canada

Email: (Bernard | lpeyton)@uottawa.ca

Mohamed Alhaj

Computer Engineering Department

Al-Ahliyya Amman University

Amman, Jordan

Email: m.alhaj@ammanu.edu.jo

Abstract—Software engineering models typically support some

form of graphic visualization. Similarly, testing results are

shown as execution traces that testing tools, such as TTCN-3

can display as message sequence charts. However, all TTCN-3

tools avoid presenting data directly in the message sequence

chart because some of it may be complex structured data.

Instead, they simply display the data types used. The real data

is made available through detailed message inspection

representations when the datatype shown is clicked on. Thus,

validation of test results requires a tedious message by message

inspection especially for large tests involving sequences of

several hundred test events. We propose the capability to

specify which data can be displayed in the test results message

sequence chart. This provides overview capabilities and

improves the navigation of test results. The approach is

illustrated with an example of SIP protocol testing and an

example of testing an avionics flight management system.

Keywords;sofware modelling; testing; TTCN-3.

I. MOTIVATION

Modeling and testing of software applications are
intricately linked. The first describes the expected behavior
while the second describes a trace of real behavior of a
system. The first preoccupation of a software engineer is to
ensure that both expected and actual behaviors do indeed
match. While formal modelling techniques abound (Unified
Modeling Language (UML), [1], Specification and
Description Language (SDL)[2], Use Case Maps (UCM)[3]),
testing is often performed with ad hoc coded tests using
frameworks such as JUnit [5]. There is very little code reuse
between tests and displaying the results often accounts for
50% of the code written to define tests.

Formal models frequently use Message Sequence Charts
(MSCs) [4] (Figure 1) (Pragmadev studio) to enable the
software engineer to visualize the behavior of a system even
before it has been implemented giving them the possibility to
detect design flaws early and thus avoid costly testing
iterations [6][7].

The formal test specification language Testing and Test
Control Notation (TTCN-3) [8] provides advantages over
frameworks like Junit, with strong typing, a powerful
matching mechanism, and a separation of concerns between
the abstract test specification layer and the concrete layer

that handles coding/decoding data which can result in
significant code reuse [16].

Figure 1. basic MSC

Especially interesting is the support of MSCs to display

test results that is provided by commercially available
TTCN-3 execution tools like TTworkbench, [9], Testcast
[10], PragmaDev Studio [11], Titan [12]. All of these tools
use MSCs to display test results which is especially efficient
when the system is composed of multiple components that
interact with each other as shown in Figure 2.

Figure 2. Test results as MSC

However, all of these tools are confronted with the same

problem of displaying complex structured data in the limited
space provided by MSCs. Thus, they avoid the display
problem altogether by showing only the data type of the
message (Figure 2 shows TTworkbench) and show the
content of the message in a separate table (Figure 3 for
TTworkbench) when clicking on one of the arrows of the
MSC. This requires a tedious message by message inspection
of the MSC. However, this feature is critical in order to
allow to spot errors efficiently. The TTworkbench tool is

particularly interesting because it is the only one that shows
the test oracle, the expected message against the data
received from the SUT and flags any mismatches in red.

Figure 3. Detailed message content display

II. TTCN-3 CONCEPT OF TEMPLATE

The central concept of TTCN-3 is the template language
construct that enables describing both test stimuli and test
oracles as structured data in a single template. This in turn is
used by the TTCN-3 tools internal matching mechanism that
compare the values of a template to the actual values
contained in the response message both on message based
and procedure based communication. More important is that
the template has a precise name and is a building block that
can be re-used using its name to specify the value of an
individual field or another template that itself can be re-used
by specifying a modification to its values. This is a concept
of inheritance. For example, one may specify the templates
for the sender and the receiver entities separately:

template charstring entityA_Template

 := “abcd@xyz.com”;

template charstring entityB_Template

 := “pqr@uvw.com”;

A stimuli message can then be specified as:

template MessageType stimuli_1 := {

 sender := entityA_Template,

 receiver := entityB_Template,

 payload := “it was a dark and

stormy night”

}

The response template can itself reuse the above entity

addresses by merely reversing their roles (sender/receiver):

template MessageType response_1 := {

 sender := entityB_Template,

 receiver := entityA_Template,

 payload := “nothing to fear”

}

The TTCN-3 template modification language construct

can be used to specify more stimuli or responses for the same
pairs of communicating entities:

template MessageType stimuli_2

 modifies stimuli_1 := {

 payload := “the sun is shining at

last”

}

Templates can then be used either in send or receive
statements to describe behaviors in the communication with
the SUT. Such behavior can be sequential, alternative or
even interleaved behavior. The TTCN-3 receive statement
does more than just receive data in the sense of traditional
general purpose languages (GPL). It compares the data
received on a communication port with the content of the
template specified. The following abstract specification
means that upon sending template stimuli_1 to the SUT, if
we receive and match the response message to the template
response_1 we decide that the test has passed. Instead, if we
receive and match alt_response we decide that the test has
failed.

myPort.send(stimuli_1);

alt {

[] myPort.receive(response_1){

 Setverdict(pass)

}

[] myPort.receive(alt_response){

 Setverdict(fail)

}

}

III. SELECTING DATA FIELDS TO DISPLAY

While most of the tools provide test results in form of an

XML file precisely for enabling users to use their own

proprietary test results display methodology, instead, we

decided to modify the tool’s source code. The motivation

for this approach was to avoid having to re-develop the

MSC display software and especially the message selection

mechanism that displays the detailed structured data table

but also to maintain consistency between the abstract layer

and the TTCN-3 tool. Thus, we preferred to modify the

display software source code itself to display selected data

so that the existing detailed data features when clicking on

the arrows of the MSC are preserved and don’t need to be

re-developed. Our approach is a first in TTCN-3 tools.

The central concept of our approach is to use the

standard TTCN-3 extension capabilities that can be

specified at the abstract layer using the with-statement

language construct. TTCN-3 extensions were devised in the

TTCN-3 standard to precisely allow tools to handle various

non-abstract aspects of a test such as associated codecs and

display test results in the most appropriate way the user

desires. While the language is standardized, there is no

standardization on how a tool operates and, in particular,

how it displays test results. Here, we use the template

definition itself and its associated with-statement in the

abstract layer as a way to specify the fields that will be

displayed on the MSC during test execution since the

template is used by the matching mechanism. In the

following example, we are testing some database content for

information about cities that is a well multi-layered data

structure with fields and sub-fields as follows.

mailto:abcd@xyz.com
mailto:pqr@uvw.com

template CityResponseType response_1

 := {

 location := {

 city := "ottawa",

 district := "ontario",

 country := "canada"

 },

 statistics := {

 population := 900000,

 average_temperature := 10.3,

 hasUniversity := true

 }

} with { extension "{display_fields

 { location {city},

 statistics { population }}}"; }

The above TTCN-3 with-statement uses the standard

TTCN-3 extension keyword. It contains a user definition

that is represented as a string. The content of this string is

not covered by the TTCN-3 syntax but by syntax defined by

the user. Thus, it is the responsibility of the user to handle

syntax and semantic checking of that string’s content. First,

we have defined a keyword called display_fields to indicate

that the specification is about selecting the fields to display.

Then, we specify a list of fields and subfields to display.

The curly brackets indicate the scope of subfields. For

example, we specified that we want to see the city subfield

of the location field and the population subfield of the

statistics field. This hierarchy is necessary because various

fields may have subfields with identical names.

Figure 4. Structure of a TTCN-3 tool

We have implemented this feature on the Titan [12]

open-source TTCN-3 execution tool software since this

feature requires modifying the source code of the tool. None

of the commercial TTCN-3 tool vendors make their source

code available. Two areas of the Tool’s source code (see

Figure 4) were modified:

 the source code for the executable (GPL) code

generator that will propagate the selected fields to

display.

 the TTCN-3 test case management code that

handles the MSC display

This did not require modification of the parser since the

content of the with-statement is user defined, thus not

modifying the grammar of the TTCN-3 language. However,

the user definition turns up in the parse tree that is used for

test execution code generation. It is during this code

generation that we take into account this extension for the

display specification. Most TTCN-3 execution software is

based on execution code generated in a general purpose

language (GPL) like Java for TTworkbench or C++ for

Titan and PragmaDev studio and multiple strategies for

TestCast. The general principle of these GPL generated

code is to transform the abstract TTCN-3 definitions into

executable GPL code, for example, in the TITAN tool, the

abstract TTCN-3 template definition response_1 shown

previously becomes a series of C++ definitions, one for

defining constants and the other to define the template

matching mechanism as follows:

static const CHARSTRING cs_7(2, "75"),

cs_2(6, "canada"),

cs_8(6, "france"),

cs_4(8, "new york"),

cs_3(13, "new york city"),

cs_1(7, "ontario"),

cs_0(6, "ottawa"),

cs_6(5, "paris"),

…

The above definitions are in turn used to generate the

C++ source code for the template definition as follows:

static void post_init_module()

{

TTCN_Location

current_location("../src/NewLoggingStudy

Struct.ttcn3", 0,

TTCN_Location::LOCATION_UNKNOWN,

"NewLoggingStudyStruct");

current_location.update_lineno(42);

#line 42

"../src/NewLoggingStudyStruct.ttcn3"

template_request__1.city() = cs_0;

template_request__1.district() = cs_1;

template_request__1.country() = cs_2;

current_location.update_lineno(48);

#line 48

"../src/NewLoggingStudyStruct.ttcn3"

{

LocationType_template& tmp_0 =

template_response__1.location();

tmp_0.city() = cs_0;

tmp_0.district() = cs_1;

tmp_0.country() = cs_2;

}

Thus, we had to use the same technique of C++ variable

definitions to pass on our field display definitions since at

run-time, the parse tree is no longer available. The test

result MSC is considered as logging activity. Here this is

illustrated by calling TITAN function log_event_str() that

actually writes the template in the source code because this

is the test oracle as follows:

alt_status

AtlasPortType_BASE::receive(const

CityRequestType_template&

value_template, CityRequestType

*value_ptr, const COMPONENT_template&

sender_template, COMPONENT *sender_ptr)

{

…

TTCN_Logger::log_event_str(": extension

{display_fields { location {city},

statistics { population, temperature}}}

@NewLoggingStudyStruct.CityRequestType :

"),

my_head->message_0->log(),

TTCN_Logger::end_event_log2str()),

msg_head_count+1);

…

Using the above source code, during the test execution,

the Titan tool writes a log file that contains the matching

mechanism results, i.e. the field names and instantiated

values of the TTCN-3 template but also after the code

modifications, the display_fields specifications as follows:

09:33:49.443373 Receive operation on

port atlasPort succeeded, message from

SUT(3): extension { display_fields {

location {city}, statistics {

population, temperature}}}

@NewLoggingStudy.CityResponseType : {

city := "ottawa", district := "ontario",

country := "canada", population :=

900000, average_temperature :=

10.300000, hasUniversity := true } id 1

The above data is used by the MSC display tool (on

Eclipse) and shows two different kinds of information. The

first is the content of our display_fields definition and the

second is the full data that was received and matched. In

fact all we had to do was to prepend the field selection logic

to the actual log data that remained unchanged. The first

will enable the MSC display software to display only the

data requested like on Figure 9 while the second one is used

for the detailed message content table that is obtained

traditionally by clicking on the selected arrow of the MSC

like on Figure 3.

While in open source Titan the execution code is written

in C++, the actual Eclipse based MSC display is written in

Java. Thus we had to modify the Java code that displays the

MSC as well. Now, this is the implementation that is valid

for Titan tool only. Each tool vendor has different coding

approaches and would require different code generation

strategies. Unfortunately since they do not make their source

code available, all we can do is to strongly encourage these

tool vendors to implement our MSC display approach.

IV. THE SIP PROTOCOL TESTING EXAMPLE

The SIP protocol (Session Initiation protocol) [13] is a

very complex protocol using complex structured data

including a substantial proportion of optional fields. The

SIP protocol TTCN-3 test suites are available from ETSI

[14] Traditional TTCN-3 tools will display all the fields in

the detailed message content table. The user must click on

some fields of interest to see the structured content.

However, most real application messages make use of only

a fraction of all the available fields. Thus, our approach can

easily display this fraction of available fields in the MSC.

Figure 5. SIP protocol example model MSC

The ETSI definitions for the SIP protocol have used a

strategy to try to alleviate the data type display problem in

test result MSCs. The approach consists of redefining

several times the same structured data type giving different

names like in the following excerpt where there is a type for

an INVITE method and the BYE request that are absolutely

identical from a field definition point of view but they will

display differently on the MSC using data types only:

type record INVITE_Request {

 RequestLine requestLine,

 MessageHeader msgHeader,

 MessageBody messageBody optional,

 Payload payload optional

}

type record BYE_Request {

 RequestLine requestLine,

 MessageHeader msgHeader,

 MessageBody messageBody optional,

 Payload payload optional

}

Where the main field is defined as:

type record RequestLine {

 Method method,

 SipUrl requestUri,

 charstring sipVersion

}

And the method type is an enumerated type:

type enumerated Method {

 ACK_E,

 BYE_E,

 CANCEL_E,

 INVITE_E,

 …

}

All of this can be used to specify a template that has all

its fields set to any value except for the method as follows:

template INVITE_Request

 INVITE_Request_r_1 := {

 requestLine := {

 method := INVITE_E,

 requestUri := ?,

 sipVersion := SIP_NAME_VERSION },

 msgHeader := {

 callId := {

 fieldName := CALL_ID_E,

 callid := ?

 },

 contact := ?,

 cSeq := {

 fieldName := CSEQ_E,

 seqNumber := ?,

 method := "INVITE" },

 fromField := ?,

 toField := ?,

 …

}

We can select the field for the SIP method to display in

the test results MSC by adding the with-statement to the

above template as follows:

with { extension "{display_fields

 { requestLine { msgHeader {cSeq

{method} }} }}"; }

This will produce exactly the test results MSC that will

be identical to the model MSC shown on Figure 5.

V. AN AVIONICS TESTING EXAMPLE

The whole idea of selecting data to display on a test results
MSC originated specifically in an industrial application that
we have worked on for testing the Esterline Flight
Management System (FMS) [15]. The FMS shown on Figure
6 enables pilots to enter flight plans and display the flight
plan on the FMS screen. A flight plan can be modified as a

flight progresses. Flight plans and modifications are entered
by typing the information using the alphanumeric key pad
that consist of letters of the alphabet, numbers and function
keys. For test automation purposes, key presses can be
simulated by sending messages to a TCP/IP communication
port. The content of a screen can be retrieved anytime with a
special function invocation that will return a response
message on the TCP/IP connection. Thus, we have the
behavior of a typical telecommunication system sending and
receiving messages with the difference that the response
message must be requested explicitly, it is not coming back
spontaneously and is subject to response delays that must be
handled carefully in case of time outs.

Figure 6. Flight Management System

In this case, stimuli messages are simple characters or

names of function keys. These messages are by definition

very short and can easily be displayed in full on the test

results MSC. For such short messages, we have devised a

default display option where if there is no with-statement

with a display field specification for a given template, the

MSC will display all data of this message. This is

particularly optimal for short message content like the FMS

key presses. The original test results MSC provided by Titan

was displayed using useless message type names as shown

on Figure 7 .

Figure 7 Original TITAN test results MSC display

It is clear from looking at Figure 7 that this MSC is not

useful from an overview point of view while our approach

on Figure 9 shows the messages values which allows the

user to explore rapidly the test results before deciding to go

for a fully detailed view of the results when for example the

matching of the test oracle with the resulting response

shows a failure. This is where the comparison with a model

such as UCM is particularly easy to achieve as shown on

Figure 8.

Figure 8. FMS model as UCM

The content of the screen is mapped to a data structure

that contains fields for the various lines of the screen and

also subfields to describe the left and the right of the screen.

The FMS has 26 such fields, a title line, 6 lines structured

into 4 subfields and a scratch pad line. Normally a test is

designed to verify a given requirement which consists in

verifying that a limited number of fields have changed their

values. For example, the result of a sequence of stimuli may

have changed the field that displays the destination airport

on line 2 in the right part of the screen.

Figure 9. Modified Titan test result MSC

VI. CONCLUSION

In this research, we have shown that when using TTCN-3, it

is an advantage to display selected information of complex

structured data so as to have an overview on the test results

and be able to locate an area of interest quickly and

efficiently in test results.

ACKNOWLEDGMENT

We would like to thank CRIAQ, MITACS, ISONEO
SOLUTIONS and CMC Esterline for their financial support
on this project.

REFERENCES

[1] S. Jagadish, C. Lawrence and R.K. Shyamasunder, cmUML -
A UML based Framework for Formal Specification of
Concurrent, Reactive Systems, Journal of Object Technology
(JOT), Vol. 7, No. 8, Novmeber-December 2008, pp 188-
207.

[2] A. Ollsen, O. Færgemand and B. Møller-Pedersen, Systems
Engineering using SDL 92, Elsevier Science B.V.,
Amsterdam, The Netherlands, 1994.

[3] R.J.A. Buhr and R. S. Casselman, Use Case Maps for Object-
Oriented Systems, Prentice Hall Inc., Upper Saddle River,
New Jersey, USA, 1995. ISBN:0-13-456542-8

[4] R. Alur, and M. Yannakakis, Model checking of message
sequence charts, International Conference on Concurrency
Theory. Springer Berlin Heidelberg, 1999, pp 114-129

[5] Y. Cheon, and G. T. Leavens, A simple and practical
approach to unit testing: The JML and JUnit way. In
European Conference on Object-Oriented Programming, June
2002, pp. 231-255. Springer Berlin Heidelberg.

[6] A. Miga, D. Amyot, F. Bordeleau, C. Cameron, and M.
Woodside, Deriving Message Sequence Charts from Use Case
Maps Scenario Specifications. Tenth SDL Forum (SDL’01),
Copenhagen, Denmark, June 2001.. LNCS 2078, 268-287

[7] J. Kealey, and D. Amyot, (2007) Enhanced Use Case Map
Traversal Semantics. In: E. Gaudin, E. Najm, and R. Reed
(Eds.): 13th SDL Forum (SDL 2007), Paris, France,
September 2007. LNCS 4745, Springer, 133-149.

[8] ETSI ES 201 873-1 version 4.6.1 (2014-06) The Testing and
Test Control Notation version 3 Part 1: TTCN-3 Core
Language

[9] TTworkbench,Spirent,
https://www.spirent.com/Products/TTworkbench

[10] Testcast, Elvior: http://www.elvior.com/testcast/introduction

[11] PragmaDev Studio, http://www.pragmadev.com/

[12] Titan, https://projects.eclipse.org/proposals/titan

[13] SIP RFC 3261, https://www.ietf.org/rfc/rfc3261.txt

[14] SIP TTCN-3, ETSI http://www.ttcn-
3.org/index.php/downloads/publicts/publicts-etsi/27-publicts-sip

[15] FMS, href= http://www.esterline.com/avionicssystems/en-
us/productsservices/aviation/navigationfmsgps/flightmanagementsyst
ems.aspx

[16] B. Stepien, L.Peyton, M. Shang and T.Vassiliou-Gioles, “An
Integrated TTCN-3 Test Framework Architecture for
Interconnected Object-based Internet Applications”,
International Journal of Electronic Business, Inderscience
Publishers, Vol. 11, No. 1, pp. 1-23, 2014. DOI:
http://dx.doi.org/10.1504/IJEB.2014.057898

http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/VirLibSdl07jUCMNav
http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/VirLibSdl07jUCMNav
http://www.elvior.com/testcast/introduction
http://www.pragmadev.com/
https://projects.eclipse.org/proposals/titan
https://www.ietf.org/rfc/rfc3261.txt
http://www.ttcn-3.org/index.php/downloads/publicts/publicts-etsi/27-publicts-sip
http://www.ttcn-3.org/index.php/downloads/publicts/publicts-etsi/27-publicts-sip
http://www.esterline.com/avionicssystems/en-us/productsservices/aviation/navigationfmsgps/flightmanagementsystems.aspx
http://www.esterline.com/avionicssystems/en-us/productsservices/aviation/navigationfmsgps/flightmanagementsystems.aspx
http://www.esterline.com/avionicssystems/en-us/productsservices/aviation/navigationfmsgps/flightmanagementsystems.aspx

